skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Oakley, Berl R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carbon fiber reinforced polymers (CFRPs, or composites) are increasingly replacing traditional manufacturing materials used in the automobile, aerospace, and energy sectors. With this shift, it is vital to develop end-of-life processes for CFRPs that retain the value of both the carbon fibers and the polymer matrix. Here we demonstrate a strategy to upcycle pre- and post-con- sumer polystyrene-containing CFRPs, crosslinked with unsaturated polyesters or vinyl esters, to benzoic acid. The thermoset matrix is upgraded via biocatalysis utilizing an engineered strain of the filamentous fungus Aspergillus nidulans, which gives access to valuable secondary metabolites in high yields, exemplified here by (2Z,4Z,6E)-octa-2,4,6-trienoic acid. Reactions are engineered to preserve the carbon fibers, with much of their sizing, so that the isolated carbon fiber plies are manufactured into new composite coupons that exhibit mechanical properties comparable to virgin manufacturing substrates. In sum, this represents the first system to reclaim high value from both the fiber fabric and polymer matrix of a CFRP. 
    more » « less
    Free, publicly-accessible full text available November 6, 2025
  2. Abstract  Secondary metabolites (SMs) are biologically active small molecules, many of which are medically valuable. Fungal genomes contain vast numbers of SM biosynthetic gene clusters (BGCs) with unknown products, suggesting that huge numbers of valuable SMs remain to be discovered. It is challenging, however, to identify SM BGCs, among the millions present in fungi, that produce useful compounds. One solution is resistance gene-guided genome mining, which takes advantage of the fact that some BGCs contain a gene encoding a resistant version of the protein targeted by the compound produced by the BGC. The bioinformatic signature of such BGCs is that they contain an allele of an essential gene with no SM biosynthetic function, and there is a second allele elsewhere in the genome. We have developed a computer-assisted approach to resistance gene-guided genome mining that allows users to query large databases for BGCs that putatively make compounds that have targets of therapeutic interest. Working with the MycoCosm genome database, we have applied this approach to look for SM BGCs that target the proteasome β6 subunit, the target of the proteasome inhibitor fellutamide B, or HMG-CoA reductase, the target of cholesterol reducing therapeutics such as lovastatin. Our approach proved effective, finding known fellutamide and lovastatin BGCs as well as fellutamide- and lovastatin-related BGCs with variations in the SM genes that suggest they may produce structural variants of fellutamides and lovastatin. Gratifyingly, we also found BGCs that are not closely related to lovastatin BGCs but putatively produce novel HMG-CoA reductase inhibitors. One-Sentence SummaryA new computer-assisted approach to resistance gene-directed genome mining is reported along with its use to identify fungal biosynthetic gene clusters that putatively produce proteasome and HMG-CoA reductase inhibitors. 
    more » « less
  3. Polystyrene (PS) is one of the most used, yet infrequently recycled plastics. Although manufactured on the scale of 300 million tons per year globally, current approaches toward PS degradation are energy- and carbon-inefficient, slow, and/or lim- ited in the value that they reclaim. We recently reported a scalable process to degrade post-consumer polyethylene-containing waste streams into carboxylic diacids. Engineered fungal strains then upgrade these diacids biosynthetically to synthesize pharmacologi- cally active secondary metabolites. Herein, we apply a similar reaction to rapidly convert PS to benzoic acid in high yield. Engi- neered strains of the filamentous fungus Aspergillus nidulans then biosynthetically upgrade PS-derived crude benzoic acid to the structurally diverse secondary metabolites ergothioneine, pleuromutilin, and mutilin. Further, we expand the catalog of plastic- derived products to include spores of the industrially relevant biocontrol agent Aspergillus flavus Af36 from crude PS-derived ben- zoic acid. 
    more » « less
  4. Abstract Waste plastics represent major environmental and economic burdens due to their ubiquity, slow breakdown rates, and inadequacy of current recycling routes. Polyethylenes are particularly problematic, because they lack robust recycling approaches despite being the most abundant plastics in use today. We report a novel chemical and biological approach for the rapid conversion of polyethylenes into structurally complex and pharmacologically active compounds. We present conditions for aerobic, catalytic digestion of polyethylenes collected from post‐consumer and oceanic waste streams, creating carboxylic diacids that can then be used as a carbon source by the fungusAspergillus nidulans. As a proof of principle, we have engineered strains ofA. nidulansto synthesize the fungal secondary metabolites asperbenzaldehyde, citreoviridin, and mutilin when grown on these digestion products. This hybrid approach considerably expands the range of products to which polyethylenes can be upcycled. 
    more » « less